Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4'-Methylbiphenyl-2-yl)-2-triphenylmethyl-2H-tetrazole

Guo-Xi Wang and Heng-Yun Ye*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: hyye@seu.edu.cn

Received 17 October 2007; accepted 18 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.148; data-to-parameter ratio = 17.7.

The title compound, C₃₃H₂₆N₄, was synthesized in two steps from 2-phenylbenzonitrile. Geometric parameters are in the usual ranges. The tetrazole ring encloses dihedral angles of 45.76(9), 71.44(8) and $72.38(6)^{\circ}$ with the three phenyl rings of the triphenylmethyl group. The dihedral angle between the tetrazole ring and the benzene ring directly attached to it is $49.13 (8)^{\circ}$ and the dihedral angle between the aromatic rings of the biphenyl group is $54.29 (8)^{\circ}$.

Related literature

For the chemistry of tetrazole, see: Arp et al. (2000); Dunica et al. (1991); Wang et al. (2005); Wittenberger & Donner (1993). For related literature, see: Hu et al. (2007).

Experimental

Crystal data

C H N	TT 05040 (10) 13
$C_{33}H_{26}N_4$	$V = 2584.3 (13) \text{ A}^3$
$M_r = 478.58$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.529 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 12.710 (3) Å	T = 293 (2) K
c = 17.707 (7) Å	$0.2 \times 0.08 \times 0.08$ mm
$\beta = 113.58 \ (2)^{\circ}$	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.816, T_{\max} = 1.000$ (expected range = 0.812 - 0.994)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	335 parameters
$wR(F^2) = 0.148$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
5925 reflections	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

26288 measured reflections

 $R_{\rm int} = 0.061$

5925 independent reflections

3802 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2551).

References

Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.

- Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395-2400.
- Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
- Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.
- Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.

Acta Cryst. (2007). E63, o4410 [doi:10.1107/S1600536807051537]

5-(4'-Methylbiphenyl-2-yl)-2-triphenylmethyl-2H-tetrazole

G.-X. Wang and H.-Y. Ye

Comment

Studies on compounds containing a tetrazole ring were in recent years highly stimulated by its a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials (Hu, *et al.*, 2007, Wang, *et al.*, 2005; Dunica, *et al.*, 1991; Wittenberger *et al.*, 1993). We report here the crystal structure of 2-triphenylmethyl-5-(2-(4-methyl-phenyl)-benzyl)-tetrazole.

The tetrazole moiety is substituted by a triphenyl-methyl group in the position of N2 and a 2-(4-methyl-phenyl)-benzyl group in the position of C1. The bond distances and bond angles of tetrazole functional group are similar to those found in other tetrazole-containing compounds (Wang, *et al.*, 2005; Arp *et al.*, 2000; Hu, *et al.*, 2007). Geometric parameters are in the usual ranges. The tetrazole rings encloses dihedral angles of 45.76 (9)°, 71.44 (8)° and 72.38 (6)° with the three phenyl rings of the triphenylmethyl residue. The dihedral angle between the phenyl ring directly attached to the tetrazole ring is 49.13 (8)° and the dihedral angle between the aromatic rings of the biphenyl moiety is 54.29 (8)°.

Experimental

5-(2-(4-methyl-phenyl)-benzyl)-tetrazole was synthesized by reaction of 2-(4-methyl-phenyl)-benzonitrile and sodium azide in the presence of zinc(II) choride according to the procedure described in the literature method (Dunica, *et al.*, 1991). To a toluene solution (50 ml) containing 5-(2-phenyl-benzyl)-tetrazole (112 mg, 0.5 mmol) and chlorotriphenylmethane (161 mg, 0.5 mmol) was added 5 ml of an aqueous solution of NaOH (22 mg, 0.55 mol). The mixture was stirred for 8 h until a precipitation was observed. After filtration and washing with 2 ml e thanol, the crude product was collected and re-crystallized by slowly evaporating its ethyl acetate solution to obtain colorless block shaped crystals.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on their parent atoms with $U_{iso}(H) = 1.2 \text{Ueq}(C)$ or $U_{iso}(H) = 1.5 \text{Ueq}(C_{methyl})$.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. Fig. i2. The crystal packing of the title compound viewed along the *b* axis.

5-(4'-Methylbiphenyl-2-yl)-2-triphenylmethyl-2*H*-tetrazole

Crystal data	
$C_{33}H_{26}N_4$	$F_{000} = 1008$
$M_r = 478.58$	$D_{\rm x} = 1.230 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 20885 reflections
a = 12.529 (3) Å	$\theta = 3.0 - 27.5^{\circ}$
<i>b</i> = 12.710 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 17.707 (7) Å	T = 293 (2) K
$\beta = 113.58 \ (2)^{\circ}$	Blocck, colorless
$V = 2584.3 (13) \text{ Å}^3$	$0.2\times0.08\times0.08~mm$
Z = 4	

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer	3802 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.061$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.816, \ T_{\max} = 1.000$	<i>l</i> = −22→22
26288 measured reflections	Standard reflections: ?
5925 independent reflections	

Refinement

Refinement on F^2 Se	econdary atom site location: difference Fourier map
Least-squares matrix: full Hy sit	ydrogen site location: inferred from neighbouring tes
$R[F^2 > 2\sigma(F^2)] = 0.060$ H-	-atom parameters constrained
$wR(F^2) = 0.148$ wh	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.3939P]$ here $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(1/\sigma)_{\rm max} < 0.001$

5925 reflections

$\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

335 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	-0.14908 (13)	-0.37059 (12)	-0.19321 (9)	0.0394 (4)
N2	-0.23004 (12)	-0.32303 (11)	-0.25762 (8)	0.0329 (3)
N3	-0.24932 (14)	-0.22479 (12)	-0.24201 (10)	0.0449 (4)
N4	-0.17693 (15)	-0.20571 (13)	-0.16526 (9)	0.0483 (4)
C1	-0.11690 (15)	-0.29541 (14)	-0.13699 (10)	0.0345 (4)
C2	-0.03109 (15)	-0.31302 (14)	-0.05191 (11)	0.0377 (4)
C3	-0.06098 (18)	-0.28582 (17)	0.01298 (12)	0.0481 (5)
H3	-0.1294	-0.2487	0.0027	0.058*
C4	0.0102 (2)	-0.31350 (18)	0.09289 (12)	0.0574 (6)
H4	-0.0094	-0.2940	0.1364	0.069*
C5	0.1101 (2)	-0.37015 (18)	0.10759 (12)	0.0591 (6)
Н5	0.1558	-0.3928	0.1607	0.071*
C6	0.14280 (18)	-0.39344 (16)	0.04398 (12)	0.0503 (5)
H6	0.2117	-0.4301	0.0551	0.060*
C7	0.07479 (16)	-0.36322 (14)	-0.03679 (11)	0.0387 (4)
C8	0.11918 (15)	-0.37666 (14)	-0.10199 (11)	0.0369 (4)
C9	0.12820 (16)	-0.28925 (15)	-0.14663 (11)	0.0418 (5)
H9	0.1028	-0.2240	-0.1367	0.050*
C10	0.17390 (17)	-0.29793 (17)	-0.20499 (12)	0.0470 (5)
H10	0.1801	-0.2381	-0.2332	0.056*
C11	0.21097 (16)	-0.39364 (18)	-0.22289 (12)	0.0472 (5)
C12	0.20315 (18)	-0.48008 (17)	-0.17856 (13)	0.0509 (5)
H12	0.2282	-0.5452	-0.1891	0.061*
C13	0.15893 (17)	-0.47219 (15)	-0.11889 (13)	0.0466 (5)
H13	0.1557	-0.5318	-0.0895	0.056*
C14	0.2569 (2)	-0.4027 (2)	-0.28951 (15)	0.0754 (7)
H14A	0.1971	-0.3826	-0.3415	0.113*
H14B	0.2799	-0.4741	-0.2926	0.113*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14C	0.3229	-0.3571	-0.2768	0.113*
C15	-0.39586 (15)	-0.30452 (14)	-0.39002 (10)	0.0368 (4)
C16	-0.51412 (17)	-0.31788 (16)	-0.41246 (12)	0.0476 (5)
H16	-0.5408	-0.3732	-0.3903	0.057*
C17	-0.5932 (2)	-0.2493 (2)	-0.46775 (15)	0.0654 (7)
H17	-0.6726	-0.2594	-0.4827	0.078*
C18	-0.5559 (2)	-0.1677 (2)	-0.50024 (15)	0.0719 (8)
H18	-0.6095	-0.1219	-0.5371	0.086*
C19	-0.4384 (2)	-0.15294 (17)	-0.47857 (14)	0.0660 (7)
H19	-0.4127	-0.0969	-0.5007	0.079*
C20	-0.35856 (18)	-0.22107 (15)	-0.42406 (12)	0.0496 (5)
H20	-0.2794	-0.2110	-0.4101	0.060*
C21	-0.36339 (14)	-0.47084 (14)	-0.30304 (11)	0.0365 (4)
C22	-0.38884 (18)	-0.56707 (16)	-0.34185 (13)	0.0516 (5)
H22	-0.3672	-0.5810	-0.3853	0.062*
C23	-0.4464 (2)	-0.6433 (2)	-0.31673 (18)	0.0745 (7)
H23	-0.4638	-0.7076	-0.3440	0.089*
C24	-0.4779 (2)	-0.6253 (2)	-0.25255 (18)	0.0770 (8)
H24	-0.5163	-0.6771	-0.2359	0.092*
C25	-0.4523 (2)	-0.5303 (2)	-0.21283 (16)	0.0698 (7)
H25	-0.4730	-0.5177	-0.1687	0.084*
C26	-0.39603 (18)	-0.45281 (18)	-0.23792 (13)	0.0528 (5)
H26	-0.3800	-0.3882	-0.2110	0.063*
C27	-0.23312 (15)	-0.42746 (13)	-0.37810 (11)	0.0350 (4)
C28	-0.11894 (16)	-0.46003 (16)	-0.33885 (13)	0.0476 (5)
H28	-0.0799	-0.4502	-0.2823	0.057*
C29	-0.06194 (18)	-0.50713 (17)	-0.38280 (16)	0.0586 (6)
H29	0.0153	-0.5278	-0.3554	0.070*
C30	-0.1168 (2)	-0.52379 (18)	-0.46542 (16)	0.0600 (6)
H30	-0.0782	-0.5564	-0.4943	0.072*
C31	-0.2307 (2)	-0.4914 (2)	-0.50548 (15)	0.0653 (7)
H31	-0.2691	-0.5017	-0.5620	0.078*
C32	-0.28783 (19)	-0.44413 (18)	-0.46285 (12)	0.0528 (5)
H32	-0.3647	-0.4228	-0.4910	0.063*
C33	-0.30591 (14)	-0.38266 (13)	-0.33318 (10)	0.0323 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0336 (8)	0.0400 (9)	0.0327 (8)	0.0066 (7)	0.0009 (7)	0.0007 (7)
N2	0.0294 (7)	0.0319 (8)	0.0302 (7)	0.0043 (6)	0.0046 (6)	0.0003 (6)
N3	0.0479 (10)	0.0372 (9)	0.0380 (9)	0.0071 (7)	0.0049 (8)	-0.0028 (7)
N4	0.0521 (10)	0.0411 (9)	0.0363 (9)	0.0055 (8)	0.0015 (8)	-0.0055 (7)
C1	0.0291 (9)	0.0390 (10)	0.0319 (9)	0.0004 (8)	0.0085 (8)	-0.0021 (8)
C2	0.0352 (10)	0.0416 (10)	0.0302 (9)	-0.0024 (8)	0.0067 (8)	-0.0009 (8)
C3	0.0425 (11)	0.0597 (13)	0.0394 (11)	-0.0014 (10)	0.0136 (9)	-0.0063 (9)
C4	0.0618 (14)	0.0740 (15)	0.0333 (11)	-0.0070 (12)	0.0158 (10)	-0.0070 (10)
C5	0.0642 (15)	0.0697 (15)	0.0292 (11)	-0.0002 (12)	0.0039 (10)	0.0040 (10)

C6	0.0480 (12)	0.0539 (13)	0.0365 (11)	0.0048 (10)	0.0037 (9)	0.0019 (9)
C7	0.0374 (10)	0.0380 (10)	0.0319 (9)	-0.0035 (8)	0.0048 (8)	-0.0013 (8)
C8	0.0284 (9)	0.0396 (10)	0.0329 (9)	0.0014 (8)	0.0020 (8)	-0.0018 (8)
C9	0.0408 (11)	0.0400 (10)	0.0389 (10)	0.0068 (8)	0.0101 (9)	-0.0006 (8)
C10	0.0464 (12)	0.0515 (12)	0.0398 (11)	0.0008 (9)	0.0140 (9)	0.0052 (9)
C11	0.0346 (10)	0.0639 (14)	0.0371 (11)	0.0026 (9)	0.0080 (9)	-0.0078 (10)
C12	0.0457 (12)	0.0464 (12)	0.0550 (13)	0.0079 (9)	0.0143 (10)	-0.0102 (10)
C13	0.0439 (11)	0.0388 (11)	0.0500 (12)	0.0028 (9)	0.0114 (10)	0.0006 (9)
C14	0.0712 (17)	0.100 (2)	0.0639 (16)	0.0099 (15)	0.0367 (14)	-0.0083 (14)
C15	0.0346 (10)	0.0393 (10)	0.0274 (9)	0.0052 (8)	0.0028 (8)	-0.0024 (8)
C16	0.0373 (11)	0.0539 (12)	0.0399 (11)	0.0039 (9)	0.0032 (9)	-0.0009 (9)
C17	0.0441 (12)	0.0670 (16)	0.0613 (15)	0.0172 (11)	-0.0038 (11)	0.0008 (12)
C18	0.0707 (17)	0.0571 (15)	0.0525 (14)	0.0210 (13)	-0.0124 (12)	0.0052 (11)
C19	0.0801 (18)	0.0462 (13)	0.0487 (13)	0.0027 (12)	0.0015 (12)	0.0124 (10)
C20	0.0472 (12)	0.0462 (11)	0.0419 (11)	-0.0002 (9)	0.0037 (9)	0.0076 (9)
C21	0.0267 (9)	0.0406 (10)	0.0361 (10)	0.0030 (8)	0.0061 (8)	0.0058 (8)
C22	0.0507 (12)	0.0470 (12)	0.0547 (13)	-0.0096 (10)	0.0187 (11)	0.0001 (10)
C23	0.0743 (17)	0.0569 (15)	0.0890 (19)	-0.0236 (13)	0.0292 (16)	0.0033 (14)
C24	0.0580 (16)	0.0808 (19)	0.0872 (19)	-0.0175 (14)	0.0237 (15)	0.0308 (16)
C25	0.0540 (14)	0.100 (2)	0.0607 (15)	-0.0031 (14)	0.0281 (13)	0.0201 (14)
C26	0.0462 (12)	0.0638 (14)	0.0501 (12)	-0.0015 (10)	0.0210 (11)	0.0032 (10)
C27	0.0341 (9)	0.0327 (9)	0.0372 (10)	-0.0033 (7)	0.0134 (8)	-0.0038 (7)
C28	0.0360 (10)	0.0501 (12)	0.0517 (12)	0.0012 (9)	0.0121 (9)	-0.0096 (9)
C29	0.0392 (12)	0.0577 (14)	0.0823 (17)	-0.0015 (10)	0.0278 (12)	-0.0174 (12)
C30	0.0631 (15)	0.0585 (14)	0.0770 (17)	-0.0154 (12)	0.0475 (14)	-0.0203 (12)
C31	0.0685 (16)	0.0843 (18)	0.0489 (13)	-0.0081 (13)	0.0294 (12)	-0.0165 (12)
C32	0.0494 (12)	0.0671 (14)	0.0413 (12)	0.0015 (10)	0.0177 (10)	-0.0070 (10)
C33	0.0263 (8)	0.0355 (9)	0.0286 (9)	0.0010(7)	0.0043 (7)	0.0002 (7)

Geometric parameters (Å, °)

N1—C1	1.321 (2)	C15—C33	1.537 (2)
N1—N2	1.3301 (19)	C16—C17	1.387 (3)
N2—N3	1.322 (2)	С16—Н16	0.9300
N2—C33	1.500 (2)	C17—C18	1.357 (4)
N3—N4	1.320 (2)	С17—Н17	0.9300
N4—C1	1.347 (2)	C18—C19	1.378 (4)
C1—C2	1.476 (2)	C18—H18	0.9300
C2—C3	1.387 (3)	C19—C20	1.382 (3)
C2—C7	1.398 (3)	С19—Н19	0.9300
C3—C4	1.383 (3)	С20—Н20	0.9300
С3—Н3	0.9300	C21—C22	1.376 (3)
C4—C5	1.376 (3)	C21—C26	1.388 (3)
C4—H4	0.9300	C21—C33	1.538 (2)
C5—C6	1.376 (3)	C22—C23	1.383 (3)
С5—Н5	0.9300	C22—H22	0.9300
C6—C7	1.394 (3)	C23—C24	1.363 (4)
С6—Н6	0.9300	С23—Н23	0.9300
С7—С8	1.478 (3)	C24—C25	1.370 (4)

C8—C13	1.390 (3)	C24—H24	0.9300
C8—C9	1.394 (3)	C25—C26	1.384 (3)
C9—C10	1.372 (3)	C25—H25	0.9300
С9—Н9	0.9300	C26—H26	0.9300
C10-C11	1.383 (3)	C27—C28	1.380 (3)
C10—H10	0.9300	C27—C32	1.394 (3)
C11—C12	1.376 (3)	C27—C33	1.539 (2)
C11—C14	1.509 (3)	C28—C29	1.385 (3)
C12—C13	1.379 (3)	C28—H28	0.9300
C12—H12	0.9300	C29—C30	1.361 (3)
С13—Н13	0.9300	С29—Н29	0.9300
C14—H14A	0.9600	C30—C31	1.378 (3)
C14—H14B	0.9600	С30—Н30	0.9300
C14—H14C	0.9600	C31—C32	1.370 (3)
C15—C16	1.382 (3)	С31—Н31	0.9300
C15—C20	1.390 (3)	С32—Н32	0.9300
C1—N1—N2	102.45 (14)	C17—C16—H16	119.8
N3—N2—N1	112.98 (14)	C18—C17—C16	120.6 (2)
N3—N2—C33	124.06 (13)	С18—С17—Н17	119.7
N1—N2—C33	121.93 (14)	C16—C17—H17	119.7
N4—N3—N2	106.32 (14)	C17—C18—C19	119.8 (2)
N3—N4—C1	106.18 (15)	C17—C18—H18	120.1
N1—C1—N4	112.04 (15)	C19—C18—H18	120.1
N1—C1—C2	122.50 (16)	C18—C19—C20	120.2 (2)
N4—C1—C2	125.31 (16)	C18—C19—H19	119.9
C3—C2—C7	120.34 (17)	С20—С19—Н19	119.9
C3—C2—C1	118.66 (17)	C19—C20—C15	120.4 (2)
C7—C2—C1	120.83 (16)	С19—С20—Н20	119.8
C4—C3—C2	120.5 (2)	С15—С20—Н20	119.8
С4—С3—Н3	119.8	C22—C21—C26	118.36 (18)
С2—С3—Н3	119.8	C22—C21—C33	121.42 (17)
C5—C4—C3	119.5 (2)	C26—C21—C33	120.15 (17)
С5—С4—Н4	120.3	C21—C22—C23	120.6 (2)
С3—С4—Н4	120.3	C21—C22—H22	119.7
C4—C5—C6	120.27 (19)	С23—С22—Н22	119.7
С4—С5—Н5	119.9	C24—C23—C22	120.9 (2)
С6—С5—Н5	119.9	С24—С23—Н23	119.6
C5—C6—C7	121.4 (2)	C22—C23—H23	119.6
С5—С6—Н6	119.3	C23—C24—C25	119.3 (2)
С7—С6—Н6	119.3	C23—C24—H24	120.4
C6—C7—C2	117.77 (18)	C25—C24—H24	120.4
C6—C7—C8	120.18 (17)	C24—C25—C26	120.5 (2)
C2—C7—C8	121.86 (15)	C24—C25—H25	119.8
C13—C8—C9	117.19 (18)	C26—C25—H25	119.8
C13—C8—C7	123.25 (17)	C25—C26—C21	120.4 (2)
C9—C8—C7	119.47 (16)	С25—С26—Н26	119.8
C10—C9—C8	121.07 (18)	C21—C26—H26	119.8
С10—С9—Н9	119.5	C28—C27—C32	117.43 (18)
С8—С9—Н9	119.5	C28—C27—C33	124.04 (16)

C9—C10—C11	121.53 (19)	C32—C27—C33	118.34 (16)
С9—С10—Н10	119.2	C27—C28—C29	120.7 (2)
С11—С10—Н10	119.2	C27—C28—H28	119.7
C12-C11-C10	117.66 (19)	C29—C28—H28	119.7
C12-C11-C14	121.4 (2)	C30—C29—C28	121.2 (2)
C10-C11-C14	120.9 (2)	С30—С29—Н29	119.4
C11—C12—C13	121.40 (19)	C28—C29—H29	119.4
С11—С12—Н12	119.3	C29—C30—C31	118.7 (2)
C13—C12—H12	119.3	С29—С30—Н30	120.6
C12—C13—C8	121.12 (19)	С31—С30—Н30	120.6
С12—С13—Н13	119.4	C32—C31—C30	120.6 (2)
С8—С13—Н13	119.4	C32—C31—H31	119.7
C11—C14—H14A	109.5	C30—C31—H31	119.7
C11—C14—H14B	109.5	C31—C32—C27	121.3 (2)
H14A—C14—H14B	109.5	С31—С32—Н32	119.3
C11—C14—H14C	109.5	С27—С32—Н32	119.3
H14A—C14—H14C	109.5	N2-C33-C21	106.03 (14)
H14B—C14—H14C	109.5	N2—C33—C15	107.14 (13)
C16—C15—C20	118.47 (17)	C21—C33—C15	112.06 (14)
C16—C15—C33	121.99 (17)	N2—C33—C27	110.65 (13)
C20-C15-C33	119.43 (16)	C21—C33—C27	111.47 (14)
C15—C16—C17	120.4 (2)	C15—C33—C27	109.37 (14)
C15—C16—H16	119.8		

